REZONING APPLICATION
Preserve at Ravenel
PLANNED DEVELOPMENT DISTRICT(PD)

EXHIBIT G Traffic Impact Study

$$
\text { J - } 28397
$$

November 2022

DAVISON INVESTORS DEVELOPMENT

2021

March

TRAFFIC IMPACT ANALYSIS

ALONG COUNTY LINE ROAD/DAVISON ROAD IN CHARLESTON COUNTY, SOUTH CAROLINA

DAVISON INVESTORS DEVELOPMENT

TRAFFIC IMPACT ANALYSIS

This document entitled "Davison Investors Development Traffic Impact Analysis" was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Davison Investors, LLC (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Joshua Mitchell, PE

Stuart Day, PE, PTOE

March 2021

TABLE OF CONTENTS

EXECUTIVE SUMMARY
1.0 INTRODUCTION 1.1
1.1 PROJECT BACKGROUND 1.1
1.2 EXISTING ROADWAY CONDITIONS 1.1
2.0 DRIVEWAY SPACING REVIEW 2.1
3.0 PROJECT TRAFFIC 3.1
3.1 PROPOSED LAND USES 3.1
3.2 TRIP GENERATION ESTIMATES 3.1
3.3 TRIP DISTRIBUTION \& ASSIGNMENT 3.1
4.0 TRAFFIC VOLUME DEVELOPMENT 4.1
4.1 EXISTING TRAFFIC VOLUMES 4.1
4.2 FUTURE TRAFFIC PROJECTIONS 4.1
5.0 TRAFFIC IMPACT ANALYSIS 5.1
5.1 TURN LANE ANALYSIS 5.1
5.1.1 Right-Turn Lanes 5.1
5.1.2 Left-Turn Lanes 5.2
5.2 INTERSECTION LOS ANALYSIS 5.3
6.0 SUMMARY OF FINDINGS AND RECOMMENDATIONS 6.1
LIST OF TABLES
Table 2.1 - Minimum Driveway Spacing* 2.1
Table 3.1 - Trip Generation Estimates 3.1
Table 5.1 - Right-Turn Lane Criteria Warrants 5.1
Table 5.2 - Left-Turn Lane Criteria Warrants 5.2
Table 5.3 - HCM 2010 Intersection LOS Criteria 5.3
Table 5.4 - Peak Hour Intersection Analysis Results 5.4
LIST OF EXHIBIITS
Exhibit 1.1 - Davison Investors Development Location Map 1.2
Exhibit 1.2 - Davison Investors Development Site Plan 1.3
Exhibit 3.1 - Project Traffic Distribution and Assignment 3.2
Exhibit 3.2 - AM and PM Peak Hour Project Traffic Volumes 3.3
Exhibit 4.1-2020 Existing Peak Hour Traffic Volumes 4.2
Exhibit 4.2 - Vested Traffic Volumes from the Nearby Poplar Grove Development 4.3
Exhibit 4.3 - 2025 No Build Peak Hour Traffic Volumes 4.4
Exhibit 4.4 - 2025 Build Peak Hour Traffic Volumes 4.5
Exhibit 5.1-2025 No Build and Build Improved Level of Service Results 5.5
LIST OF APPENDICES
Appendix A Trip Generation Worksheets Appendix B Traffic Volume Data Appendix C Traffic Volume Development Worksheets Appendix D Analysis Worksheets: 2020 Existing Conditions Appendix E Analysis Worksheets: 2025 No Build Conditions Appendix F Analysis Worksheets: 2025 Build Conditions Appendix G Analysis Worksheets: 2025 Build Conditions w/ Recommended Improvements Appendix H Turn Lane Analysis Worksheets

EXECUTIVE SUMMARY

A traffic impact analysis was conducted for the proposed Davison Investors development in accordance with SCDOT and Charleston County guidelines.

The proposed Davison Investors development is located west of Davison Road and south of County Line Road in Charleston County, South Carolina and will consist of up to 390 singlefamily detached homes and 110 multifamily housing units (low-rise). While the development will be marketed primarily to active retirees, the trip generation potential for single-family detached homes and multifamily housing was used in an effort to be conservative.

Access to the development will be provided through up to five (5) proposed full access driveway(s) along the western/ southern side of Davison Road/County Line Road, all of which meet the SCDOT spacing requirements.

Therefore, the extent of the roadway network analyzed consisted of the five project driveway intersections as well as the signalized intersection of Davison Road \& US 17/Savannah Highway.

According to the current development plan, based on the turn lane criteria in SCDOT's Roadway Design Manual, exclusive westbound/northbound left-turn lanes along County Line Road/Davison Road are recommended at Project Driveways \#1, \#2, \#3, and \#4 prior to full buildout of the development. However, as the development is built out and/or the development plan changes, a detailed, phased traffic study may be performed in the future to determine the precise timing and threshold of development triggering the need for turn lanes.

The results of the intersection analysis indicate that the study intersections (including the intersection of US 17/Savannah Highway \& Davison Road) currently operate and are expected to continue to operate at an acceptable LOS with full build out of the proposed Davison Investors development, with only one exception at one of the project driveways:

The intersection of Davison Road \& Ten Shillings Way/Project Driveway \#1 is anticipated to experience undesirable delay in the PM peak hour of the 2025 Build Conditions. However, this projected delay is likely due to the conservative nature of the HCM 2010 unsignalized methodology and is not an uncommon condition for two-way stop control during the peak hours of the day. Therefore, no improvements to mitigate this delay are recommended.

1.0 INTRODUCTION

$1.1 \quad$ PROJECT BACKGROUND

The purpose of this report is to document the procedures and findings of a traffic impact analysis for the proposed Davison Investors development in accordance with SCDOT and Charleston County guidelines. The proposed Davison Investors development is located west of Davison Road and south of County Line Road in Charleston County, South Carolina, as shown in Exhibit 1.1, and will consist of the following land uses, with anticipated completion in 2025:

* up to 390 Single-Family Detached Housing Units; and
* up to 110 Multifamily Housing (Low-Rise) Units.

Access to the development will be provided through up to five (5) proposed full access driveway(s) along the western/southern side of Davison Road/County Line Road, as shown in the site plan in Exhibit 1.2.

Project Driveway \#1 is proposed to align opposite of Ten Shillings Way; Project Driveway \#2 is proposed to be located between Ten Shillings Way and Bulow Landing Road; Project Driveway \#3 is proposed to align opposite of Bulow Landing Road; Project Driveway \#4 is proposed to align opposite of the existing Equestrian Center driveway; and Project Driveway \#5 is proposed to be located between Project Driveway \#4 and the existing Moberry Road/S-10-1447.

The traffic impact analysis considers the weekday AM peak hour (between 7:00 AM and 9:00 AM) and the weekday PM peak hour (between 4:00 PM and 6:00 PM) as the study time frames.

The extent of the existing roadway network to be studied consists of the 6 (six) intersections of:

1. Davison Road \& US 17/Savannah Highway;
2. Davison Road \& Ten Shillings Way/Project Driveway \#1
3. Davison Road \& Project Driveway \#2
4. Davison Road/County Line Road \& Bulow Landing Road/Project Driveway \#3;
5. County Line Road \& Equestrian Center Driveway/Project Driveway \#4; and
6. County Line Road \& Project Driveway \#5.

1.2 EXISTING ROADWAY CONDITIONS

County Line Road/Davison Road is a two-lane Major Collector that primarily serves residential and agricultural land uses. The posted speed limit is 45 mph and the average annual daily traffic (AADT) in 2019 was 3,800 vehicles/day. Based upon existing turning movement counts, the percentage of heavy vehicles along County Line Road/Davison Road is approximately 7%.

US 17/Savannah Highway is a four-lane, divided Principal Arterial that primarily serves commercial and residential land uses. The posted speed limit is 55 mph and the average annual daily traffic (AADT) in 2019 was 34,900 vehicles/day. Based upon existing turning movement counts, the percentage of heavy vehicles along US 17/Savannah Highway is approximately 5%.

Exhibit 1.1 - Davison Investors Development Location Map

Exhibit 1.2 - Davison Investors Development Site Plan

2.0 DRIVEWAY SPACING REVIEW

Access to the development will be provided through up to five (5) proposed full access driveway(s) along the western/southern side of Davison Road/County Line Road.

Project Driveway \#1 is proposed to align opposite of Ten Shillings Way; Project Driveway \#2 is proposed to be located between Ten Shillings Way and Bulow Landing Road; Project Driveway \#3 is proposed to align opposite of Bulow Landing Road; Project Driveway \#4 is proposed to align opposite of the existing Equestrian Center driveway; and Project Driveway \#5 is proposed to be located between Project Driveway \#4 and the existing Moberry Road/S-10-1447.

A review of the driveway spacing of the proposed driveways was completed based on information contained in SCDOT's Access \& Roadside Management Standards (ARMS) manual (2008), shown in the adapted Error! Reference source not found..

Table 2.1 - Minimum Driveway Spacing*

Posted Speed Limit (mph)	AADT $\geq \mathbf{2 0 0 0}$; or Driveways Generating >50 Peak Hour Trips	AADT <2000
30	160 ft	75 ft
35	220 ft	125 ft
40	275 ft	175 ft
45	325 ft	225 ft
≥ 50	400 ft	275 ft

*Figure 3-7 of Access \& Roadside Management Standards, 2008, SCDOT
Based upon the 45-mph speed limit and the driveway spacing criteria of ARMS, a minimum of 325 feet is required for full access along County Line Road/Davison Road.

Project Driveway \#1 is proposed to be aligned with the existing Ten Shillings Way, located approximately 550 feet south of the proposed Project Driveway \#2 and approximately 775 feet north of the next closest residential driveway to the south, both of which meet the spacing criteria.

Project Driveway \#2 is proposed to be located approximately 1,300 feet south of Bulow Landing Road and approximately 550 feet north of Ten Shillings Way, both of which meet the spacing criteria.

Project Driveway \#3 is proposed to be aligned with the existing Bulow Landing Road, located approximately 550 feet east of a proposed Poplar Grove Development driveway and approximately 1,800 feet north of Ten Shillings Way, both of which meet the spacing criteria.

Project Driveway \#4 is proposed to be aligned with the existing Equestrian Center driveway, located approximately 660 feet east of one proposed Poplar Grove development driveway and approximately 2,000 west of another proposed Poplar Grove development driveway, both of which meet the spacing criteria.

Project Driveway \#5 is proposed to be located approximately 1,300 feet east of the existing Moberry Road/S-10-1447 and approximately 1,400 feet west of a proposed Poplar Grove development driveway, both of which meet the spacing criteria.

$3.0 \quad$ PROJECT TRAFFIC

$3.1 \quad$ PROPOSED LAND USES

Project Traffic in this analysis is defined as the vehicle trips anticipated to be generated by the proposed Davison Investors development. These trips were distributed and assigned throughout the study roadway network.

The Davison Investors development is proposed to consist of the following land uses:

* up to 390 Single-Family Detached Housing Units; and
* up to110 Multifamily Housing (Low-Rise) Units.

3.2 TRIP GENERATION ESTIMATES

The trip generation potential for the development was estimated using information contained in ITE's Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition (2017) reference. The estimates utilized the following land use codes:

* LUC 210 - Single Family Detached Housing; and
* LUC 220 - Multifamily Housing (Low-Rise).

Due to the nature of the proposed Davison Investors development, internal capture trips, pass-by trips, and multimodal reduction were not considered in the trip generation estimates. The trip generation estimates for the development are shown below in Table 3.1 and documented in Appendix A.

3.3 TRIP DISTRIBUTION \& ASSIGNMENT

New external traffic expected to be generated by the Davison Investors development was distributed and assigned to the roadway network based upon existing travel patterns in the area. The general distribution of project trips was assumed to be:

* 15\% to/from the west via County Line Road
* 70\% to/from the north via US 17/Savannah Highway
* 15% to/from the south via US 17/Savannah Highway

The assignment of new external project traffic anticipated to be generated by the Davison Investors development is illustrated in Exhibit 3.1 and the AM and PM peak hour project traffic volumes are illustrated in Exhibit 3.2.

Table 3.1 - Trip Generation Estimates

Land Use	$\begin{aligned} & \text { ITE } \\ & \text { LUC } \end{aligned}$	Scale	Daily	Weekday AM Peak Period		Weekday PM Peak Period	
				Enter	Exit	Enter	Exit
Single Family Detached Housing	210	390 Units	3,638	71	211	236	139
Multifamily Housing (Low-Rise)	220	110 Units	792	12	40	40	24
New, External Trips			4,430	83	251	276	163

Exhibit 3.1 - Project Traffic Distribution and Assignment

Exhibit 3.2 - AM and PM Peak Hour Project Traffic Volumes

4.0 TRAFFIC VOLUME DEVELOPMENT

4.1 EXISTING TRAFFIC VOLUMES

The traffic impact analysis considers the weekday AM peak hour (between 7:00 AM and 9:00 AM) and the weekday PM peak hour (between 4:00 PM and 6:00 PM) as the study time frames. The extent of the existing roadway network to be studied consists of the 2 (two) intersections of:

1. Davison Road \& US 17/Savannah Highway;
2. Davison Road \& Ten Shillings Way/Project Driveway \#1
3. Davison Road \& Project Driveway \#2
4. Davison Road/County Line Road \& Bulow Landing Road/Project Driveway \#3;
5. County Line Road \& Equestrian Center Driveway/Project Driveway \#4; and
6. County Line Road \& Project Driveway \#5.

Existing 2020 traffic volumes were collected at these study area intersections during the AM and PM peak periods listed above in August of 2019 and were not recollected in 2020 due to the impacts of the ongoing COVID-19 pandemic on traffic volumes. At the intersection of Davison Road \& Ten Shillings Way, existing traffic volumes in and out of Ten Shillings way were estimated based on a trip generation analysis of the number of homes using Ten Shillings Way for access (estimated to be 70 single-family-homes). At the intersection of County Line Road \& Equestrian Center Driveway, existing traffic volumes in and out of the Equestrian Center were estimated to be 10 vehicles in and 10 vehicles out in a peak hour based on the low trip generation potential of the existing center during typical weekday peak hours.

As noted in the subsequent section, traffic volumes in the study area are anticipated to grow at an annual rate of 2% per year. Therefore, the raw 2019 volumes were adjusted to 2020 Existing Conditions by applying a 2% growth rate for one year.

The raw traffic volume counts are provided in Appendix B and the 2020 existing AM and PM peak hour traffic volumes are illustrated in Exhibit 4.1 and documented in Appendix D.

4.2 FUTURE TRAFFIC PROJECTIONS

Future 2025 No Build traffic volumes were developed by adding background traffic growth and vested traffic to the collected Existing 2020 study area peak hour volumes. Background traffic growth is growth anticipated to occur in the study area regardless of the proposed Davison Investors development. Vested traffic is traffic anticipated to be generated by other known nearby developments expected to be completed prior to the Davison Investors development.

To develop an annual background growth rate for use in the analysis, historical count data from the last 15 years along US 17/Savannah Highway and Davison Road/County Line Road (SCDOT count stations \#109 and \#565) were reviewed. It was determined that the roadways have experienced a collected annual growth of 1.6%. Therefore, to be conservative, a 2% annual growth rate was utilized to develop anticipated background traffic growth through the anticipated 2025 buildout year.

A separate project is currently proposed adjacent to the Davison Investors development. The Poplar Grove development, consisting of 450 Single-Family Homes, is located along County Line Road opposite of the Davison Investors Development in Dorchester County, South Carolina. The traffic volumes anticipated to be generated by this development were considered in the analysis as vested traffic, as illustrated in Exhibit 4.2.

2025 No Build AM and PM peak hour traffic volumes, illustrated in Exhibit 4.3, were developed by adding the background traffic growth (assuming 2\% annual growth of the existing traffic volumes) and the vested traffic from the nearby Poplar Grove development to the 2020 existing AM and PM peak hour traffic volumes.

2025 Build AM and PM peak hour traffic volumes, illustrated in Exhibit 4.4, were developed by adding the Davison Investors project traffic volumes (shown in Exhibit 3.1) to the 2025 No Build traffic volumes.

Volume development worksheets for each intersection are documented in Appendix C.

Exhibit 4.1-2020 Existing Peak Hour Traffic Volumes

Exhibit 4.2 - Vested Traffic Volumes from the Nearby Poplar Grove Development

Exhibit 4.3-2025 No Build Peak Hour Traffic Volumes

Exhibit 4.4-2025 Build Peak Hour Traffic Volumes

5.0 TRAFFIC IMPACT ANALYSIS

5.1 TURN LANE ANALYSIS

5.1.1 Right-Turn Lanes

An analysis was conducted to determine the potential need for exclusive right-turn lanes for ingress movements at the proposed project driveway(s). The need for exclusive rightturn lanes is based upon the criteria documented in Section 9.5.1.1 of SCDOT's Roadway Design Manual (2017), which consists of nine considerations, listed below:

1. At a free-flowing leg of any unsignalized intersection on a two-lane urban or rural highway which satisfies the criteria in Figure 9.5-A;
2. at a free-flowing leg of any unsignalized intersection on a high-speed (50 mph or greater), four-lane urban or rural highway which satisfies the criteria in Figure 9.5-B;
3. at the free-flowing leg of any unsignalized intersection on a six-lane urban or rural highway;
4. at any intersection where a capacity analysis determines a right-turn lane is necessary to meet the overall level-ofservice criteria;
5. as a general rule, at any signalized intersection where the projected right-turning volume is greater than 300 vehicles per hour and where there are greater than 300 vehicles per hour per lane on the mainline (A traffic analysis will be required if the turning volumes are greater than 300 vehicles per hour);
6. for uniformity of intersection design along the highway if other intersections have right-turn lanes;
7. at any intersection where the mainline is curved to the left and where the mainline curve requires superelevation;
8. at railroad crossings where the railroad is paralleled to the facility and is located close to the intersection and where a right-turn lane would be desirable to store queued vehicles avoiding interference with the movement of through traffic; or
9. at any intersection where the crash experience, existing traffic operations, sight distance restrictions (e.g., intersection beyond a crest vertical curve), or engineering judgement indicates a significant conflict related to right-turning vehicles;

Table 5.1 below details whether the previously mentioned criteria for exclusive right-turn lanes are satisfied for each driveway. An " x " indicates that the criteria is not met; a " \checkmark " indicates that it is met; and "N/A" indicates that the criteria is not applicable.

Table 5.1 - Right-Turn Lane Criteria Warrants

Criteria	Project Driveway					Reference/Note
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
	x	x	x	x	x	Appendix H
2	N/A	N/A	N/A	N/A	N/A	Speed Limit < 45 mph
3	N/A	N/A	N/A	N/A	N/A	Not a six-lane highway
4	x	x	x	x	x	Does not impact LOS
5	N/A	N/A	N/A	N/A	N/A	No signalized driveways
6	x	x	x	x	x	No EB/SB right-turn lanes
7	N/A	N/A	N/A	N/A	N/A	No such curves
8	N/A	N/A	N/A	N/A	N/A	No railroad crossings
9	N/A	N/A	N/A	N/A	N/A	No known issues

According to the current development plan, based on SCDOT's Roadway Design Manual considerations, exclusive eastbound/southbound right-turn lanes along County Line Road/Davison Road are not recommended at any of the project driveways (\#1, \#2, \#3, \#4, or \#5).

5.1.2 Left-Turn Lanes

An analysis was conducted to determine the potential need for exclusive left-turn lanes for ingress movements at the proposed project driveway(s). The need for exclusive left-turn lanes is based upon the criteria documented in Section 9.5.1.2 of SCDOT's Roadway Design Manual (2017), which consists of nine considerations, listed below:

1. At any unsignalized intersection on principal, high-speed rural highways with other arterials or collectors;
2. at any unsignalized intersection on a two-lane urban or rural highway that satisfies the criteria in Figures $9.5-\mathrm{C}$, 9.5-D, 9.5-E, 9.5-F, or 9.5-G;
3. at any intersection where a capacity analysis determines a left-turn lane is necessary to meet the level of service criteria;
4. at any signalized intersection where the left-turn volume is 300 vehicles per hour or more, conduct a traffic review to determine if dual left-turn lanes are required;
5. as a general rule, at any intersection where the leftturning volume is 100 vehicles per hour (for a single turn lane) or 300 vehicles per hour (for a dual turn lane);
6. at all entrances to major residential, commercial, and industrial developments;
7. at all median crossovers;
8. for uniformity of intersection design along the highway if other intersections have left-turn lanes (i.e., to satisfy driver expectancy); or
9. at any intersection where the crash experience, existing traffic operations, sight distance restrictions (e.g., intersection beyond a crest vertical curve), or engineering judgement indicates a significant conflict related to left-turning vehicles;

Table 5.2 below details whether the previously mentioned criteria for exclusive left-turn lanes are satisfied for each driveway. An " x " indicates that the criteria is not met; a " \checkmark " indicates that it is met; and "N/A" indicates that the criteria is not applicable.

Table 5.2 - Left-Turn Lane Criteria Warrants

Criteria	Project Driveway					Reference/Note	
	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	$\mathbf{5}$		
1	N/A	N/A	N/A	N/A	N/A	Not a high-speed arterial	
2	\checkmark	\checkmark	\checkmark	\checkmark	x	Appendix H	
3	x	x	x	x	x	Does not impact LOS	
4	N/A	N/A	N/A	N/A	N/A	No signalized driveways	
5	x	x	\checkmark	x	x	Exhibit 4.4	
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Major residential develop.	
7	N/A	N/A	N/A	N/A	N/A	No median	
8	x	x	x	x	x	No WB/NB left-turn lanes	
9	N/A	N/A	N/A	N/A	N/A	No known issues	

According to the current development plan, based on the turn lane criteria in SCDOT's Roadway Design Manual, exclusive westbound/northbound left-turn lanes along County Line Road/Davison Road are recommended at Project Driveways \#1, \#2, \#3, and \#4 prior to full buildout of the development. However, as the development is built out, a detailed, phased traffic study may be performed in the future to determine the precise timing and threshold of development triggering the need for turn lanes.

Per the criteria documented in Section 5D-4 of SCDOT's Access and Roadside Management Standards (ARMS, 2008), it is recommended that, when installed, each of the exclusive left-turn lanes consist of a total of 380 feet, with 200 feet of storage and a 180 -foot taper.

Based on SCDOT's Roadway Design Manual considerations, an exclusive westbound left-turn lane is not recommended at Project Driveway \#5.

5.2 INTERSECTION LOS ANALYSIS

Using the existing and projected peak hour traffic volumes previously discussed, intersection analysis was conducted for the study and project driveway intersections considering 2020 Existing Conditions, 2025 No Build Conditions, and 2025 Build Conditions. The analysis was conducted using the Transportation Research Board's Highway Capacity Manual 2010 (HCM 2010) methodologies of the Synchro, Version 10 software for stop-controlled and signalized intersection analysis.

Intersection level of service (LOS) grades range from LOS A to LOS F, which are directly related to the level of control delay at the intersection and characterize the operational conditions of the intersection traffic flow. LOS A operations typically represent ideal, free-flow conditions where vehicles experience little to no delays, and LOS F operations typically represent poor, forced-flow (bumper-to-bumper) conditions with high vehicular delays, and are generally considered undesirable. Table 5.3 summarizes the HCM 2010 control delay thresholds associated with each LOS grade for unsignalized and signalized intersections.

Table 5.3 - HCM 2010 Intersection LOS Criteria

LOS	Control Delay per Vehicle (s) Unsignalized*	Signalized
	≤ 10	≤ 10
B	>10 and ≤ 15	>10 and ≤ 20
C	>15 and ≤ 25	>20 and ≤ 35
D	>25 and ≤ 35	>35 and ≤ 55
E	>35 and ≤ 50	>55 and ≤ 80
F	>50	>80

As part of the intersection analysis, SCDOT's default Synchro parameters were utilized.

The existing 2020 traffic counts' peak hour factors (PHF) were utilized in the analysis of existing conditions. Future-year 2025 conditions were analyzed utilizing existing PHF, but with a minimum PHF of 0.90 and maximum PHF of 0.95 considered.

The existing 2020 heavy vehicle percentages, as previously discussed, were utilized in the analysis, with a minimum percentage of 2% considered.

Existing lane geometry was utilized for the analysis of 2020 Existing Conditions and 2025 No Build Conditions. The 2025 Build Conditions were analyzed both with existing lane geometry and with any recommended improvements resulting from this impact analysis (including any recommended exclusive turn lanes per the results of Section 5.1) to illustrate their anticipated impact on traffic operations.

The results of the intersection analysis for existing and futureyear conditions for the weekday AM and PM peak hour time periods are summarized in Table 5.4.

For signalized intersections, the overall intersection LOS and delay results are evaluated for acceptable operation, while for two-way-stop-controlled (TWSC) intersections, the LOS and delay results are evaluated for the worst-case minor-street approaches only, per HCM 2010 methodologies for TWSC intersections.

Level of service A through D is considered to be acceptable LOS, while LOS E and F is considered to be undesirable.

Table 5.4 - Peak Hour Intersection Analysis Results

| | | | | | LOS/Delay (seconds/vehicle) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

As shown in Table 5.4 and illustrated below in Exhibit 5.1, the results of the analysis indicate that the study intersections currently operate and are expected to continue to operate at an acceptable LOS with the proposed Davison Investors development, with one exception:

The intersection of Davison Road \& Ten Shillings Way/Project Driveway \#1 is anticipated to experience undesirable delay in the PM peak hour of the 2025 Build Conditions, with or without the recommended turn lanes. However, this projected delay is likely due to the conservative nature of the HCM 2010 unsignalized methodology and is not an uncommon condition for two-way stop control during the peak hours of the day.

Worksheets documenting the intersection analyses are provided in Appendix D for 2020 Existing Conditions, Appendix E for 2025 No Build Conditions, Appendix F for 2025 Build Conditions, and in Appendix G for 2025 Build Conditions with recommended improvements (turn lanes).

Exhibit 5.1-2025 No Build and Build Improved Level of Service Results

6.0 SUMMARY OF FINDINGS AND RECOMMENDATIONS

A traffic impact analysis was conducted for the proposed Davison Investors development in accordance with SCDOT and Charleston County guidelines.

The proposed Davison Investors development is located west of Davison Road and south of County Line Road in Charleston County, South Carolina and will consist of up to 390 singlefamily detached homes and 110 multifamily housing units (low-rise). While the development will be marketed primarily to active retirees, the trip generation potential for single-family detached homes and multifamily housing was used in an effort to be conservative.

Access to the development will be provided through up to five (5) proposed full access driveway(s) along the western/ southern side of Davison Road/County Line Road, all of which meet the SCDOT spacing requirements.

Therefore, the extent of the roadway network analyzed consisted of the five project driveway intersections as well as the signalized intersection of Davison Road \& US 17/Savannah Highway.

According to the current development plan, based on the turn lane criteria in SCDOT's Roadway Design Manual, exclusive westbound/northbound left-turn lanes along County Line Road/Davison Road are recommended at Project Driveways \#1, \#2, \#3, and \#4 prior to full buildout of the development. However, as the development is built out and/or the development plan changes, a detailed, phased traffic study may be performed in the future to determine the precise timing and threshold of development triggering the need for turn lanes.

The results of the intersection analysis indicate that the study intersections (including the intersection of US 17/Savannah Highway \& Davison Road) currently operate and are expected to continue to operate at an acceptable LOS with full build out of the proposed Davison Investors development, with only one exception at one of the project driveways:

The intersection of Davison Road \& Ten Shillings Way/Project Driveway \#1 is anticipated to experience undesirable delay in the PM peak hour of the 2025 Build Conditions. However, this projected delay is likely due to the conservative nature of the HCM 2010 unsignalized methodology and is not an uncommon condition for two-way stop control during the peak hours of the day. Therefore, no improvements to mitigate this delay are recommended.

DAVISON INVESTORS TRAFFIC IMPACT ANALYSIS APPENDICES

Appendix A TRIP GENERATION WORKSHEETS

TRIP GENERATION ESTIMATES

Davison Investors Development
Weekday Daily

Weekday AM Peak Hour

TRIP GENERATION CHARACTERISTICS				DIRECT. DISTRIB.		GROSS TRIPS			
Land Use	Ed.	LUC	Scale	Unit	Equation/Rate	In	Out	In	Out
Single-Family Detached Housing	10 th	210	390	DU	$\mathrm{T}=0.71(\mathrm{X})+4.80$	25%	75%	71	211
Multifamily Housing (Low-Rise)	10	220	110	DU	$\operatorname{Ln}(T)=0.95 \operatorname{Ln}(X)-0.51$	23%	77%	12	40

Weekday PM Peak Hour

TRIP GENERATION CHARACTERISTICS									DIRECT. DISTRIB.
Land Use	Ed.	LUC	Scale	Unit	Equation/Rate	In	Out	In	Out
Gingle-Family Detached Housing	10 th	210	390	DU	$\operatorname{Ln}(T)=0.96 \operatorname{Ln}(X)+0.20$	63%	37%	236	139
Multifamily Housing (Low-Rise)	10	220	110	DU	$\operatorname{Ln}(T)=0.89 \operatorname{Ln}(X)-0.02$	63%	37%	40	24
		64							

Appendix B TRAFFIC VOLUME DATA

(303) 216-2439
www.alltrafficdata.net

Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

Traffic Counts

Interval	BULOW LANDING RD Eastbound				BULOW LANDING RD Westbound				DAVISON RD Northbound				DAVISON RD Southbound				Total	Rolling Hour	Pedestrain Crossings			
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru		U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right			West	East	South	North
7:00 AM	0	0	0	0	0	4	0	1	0	0	16	1	0	0	54	0	76	366	0	0	0	0
7:15 AM	0	0	0	0	0	9	0	0	0	0	20	3	0	1	63	0	96	366	0	0	0	0
7:30 AM	0	0	0	0	0	8	0	1	0	0	15	2	0	1	75	0	102	363	0	0	0	0
7:45 AM	0	0	0	0	0	10	0	2	0	0	22	5	0	1	52	0	92	345	0	0	0	0
8:00 AM	0	0	0	0	0	5	0	2	0	0	15	4	0	3	47	0	76	323	0	0	0	0
8:15 AM	0	0	0	0	0	5	0	0	0	0	26	8	0	1	53	0	93		0	0	0	0
8:30 AM	0	0	0	0	0	3	0	0	0	0	24	2	0	0	55	0	84		0	0	0	0
8:45 AM	0	0	0	0	0	3	0	1	0	0	23	2	0	1	40	0	70		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	4	0	0	0	5	0	9
Lights	0	0	0	0	0	31	0	4	0	0	48	11	0	2	210	0	306
Mediums	0	0	0	0	0	0	0	0	0	0	21	0	0	1	29	0	51
Total	0	0	0	0	0	31	0	4	0	0	73	11	0	3	244	0	366

(303) 216-2439
www.alltrafficdata.net

Location: 2 DAVISON RD \& SAVANNAH HWY AM
Date and Start Time: Monday, August 26, 2019
Peak Hour: 07:00 AM - 08:00 AM
Peak 15-Minutes: 07:00 AM - 07:15 AM

Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.
Traffic Counts

Interval	SAVANNAH HWY Eastbound				SAVANNAH HWY Westbound				DAVISON RD Northbound				DAVISON RD Southbound				Total	Rolling Hour	Pedestrain Crossings			
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru		U-Turn	Left	Thru		U-Turn	Left	Thru	Right			West	East	South	North
7:00 AM	0	7	401	0	0	0	202	14	0	0	0	0	0	70	0	8	702	2,629	0	0	0	0
7:15 AM	0	8	326	0	0	0	219	16	0	0	0	0	0	61	0	5	635	2,505	0	0	0	0
7:30 AM	0	3	298	0	0	0	180	22	0	0	0	0	0	89	0	5	597	2,456	0	0	0	0
7:45 AM	0	9	335	0	0	0	233	21	0	0	0	0	0	87	0	10	695	2,476	0	0	0	0
8:00 AM	0	0	296	0	0	0	203	19	0	0	0	0	0	55	0	5	578	2,351	0	0	0	0
8:15 AM	0	5	346	0	0	0	159	25	0	0	0	1	0	42	0	8	586		0	0	0	0
8:30 AM	0	3	288	0	1	0	238	34	0	0	0	0	0	45	0	8	617		0	0	0	0
8:45 AM	0	11	272	0	0	0	208	21	0	0	0	0	0	51	0	7	570		0	0	0	0

Peak Rolling Hour Flow Rates

	Eastbound				Westbound				Northbound				Southbound				Total
Vehicle Type	U-Turn	Left	Thru	Right													
Articulated Trucks	0	1	41	0	0	0	42	5	0	0	0	0	0	6	0	0	95
Lights	0	26	1,289	0	0	0	746	49	0	0	0	0	0	273	0	27	2,410
Mediums	0	0	30	0	0	0	46	19	0	0	0	0	0	28	0	1	124
Total	0	27	1,360	0	0	0	834	73	0	0	0	0	0	307	0	28	2,629

(303) 216-2439
www.alltrafficdata.net

Location: 1 DAVISON RD \& BULOW LANDING RD PM
Date and Start Time: Monday, August 26, 2019
Peak Hour: 05:00 PM - 06:00 PM
Peak 15-Minutes: 05:30 PM - 05:45 PM

Peak Hour - All Vehicles

Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.
Traffic Counts

Interval	BULOW LANDING RD Eastbound				BULOW LANDING RD Westbound				DAVISON RD Northbound					DAVISON RD Southbound				Total	Rolling Hour	Pedestrain Crossings			
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru			U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right			West	East	South	North
4:00 PM	0	0	0	0	0	5	0	0		0	0	41	7	0	0	11	0	64	301	0	0	0	0
4:15 PM	0	0	0	0	0	3	0	1		0	0	52	9	0	0	16	0	81	311	0	0	0	0
4:30 PM	0	0	0	0	0	4	0	0		0	0	37	8	0	2	20	0	71	313	0	0	0	0
4:45 PM	0	0	0	0	1	5	0	0		0	0	53	8	0	0	18	0	85	337	0	0	0	0
5:00 PM	0	0	0	0	0	2	0	2		0	0	47	4	0	0	19	0	74	338	0	0	0	0
5:15 PM	0	0	0	0	0	6	0	0		0	0	48	7	0	0	22	0	83		0	0	0	0
5:30 PM	0	0	0	0	0	5	0	1		0	0	52	16	0	1	20	0	95		0	0	0	0
5:45 PM	0	0	0	0	0	3	0	1	1	0	0	58	8	0	2	14	0	86		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	4
Lights	0	0	0	0	0	16	0	4	0	0	195	35	0	3	74	0	327
Mediums	0	0	0	0	0	0	0	0	0	0	6	0	0	0	1	0	7
Total	0	0	0	0	0	16	0	4	0	0	205	35	0	3	75	0	338

All Traffic Data services $\operatorname{Inc} 10101$

(303) 216-2439
www.alltrafficdata.net

Location: 2 DAVISON RD \& SAVANNAH HWY PM
Date and Start Time: Monday, August 26, 2019
Peak Hour: 04:15 PM - 05:15 PM
Peak 15-Minutes: 05:00 PM - 05:15 PM

Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.
Traffic Counts

Interval	SAVANNAH HWY Eastbound				SAVANNAH HWY Westbound				DAVISON RD Northbound				DAVISON RD Southbound				Total	Rolling Hour	Pedestrain Crossings			
Start Time	U-Turn	Left	Thru	Right	U-Turn	eft	Thru		U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right			West	East	South	North
4:00 PM	0	6	254	0	0	0	330	49	0	0	0	0	0	14	0	4	657	2,807	0	0	0	0
4:15 PM	0	10	244	0	0	0	377	66	0	0	0	0	0	17	0	5	719	2,901	0	0	0	0
4:30 PM	0	4	247	0	0	0	363	49	0	0	0	0	0	27	0	9	699	2,891	0	0	0	0
4:45 PM	0	11	239	0	0	0	409	49	0	0	0	0	0	21	0	3	732	2,861	0	0	0	0
5:00 PM	0	8	247	0	0	0	420	54	0	0	0	0	0	20	0	2	751	2,746	0	0	0	0
5:15 PM	0	9	209	0	0	0	389	67	0	0	0	0	0	25	0	10	709		0	0	0	0
5:30 PM	0	4	235	0	0	0	340	59	0	0	0	0	0	25	0	6	669		0	0	0	0
5:45 PM	0	4	165	2	0	0	366	57	0	0	0	0	0	18	0	5	617		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	2	19	0	0	0	35	0	0	0	0	0	0	0	0	0	56
Lights	0	31	932	0	0	0	1,497	213	0	0	0	0	0	80	0	18	2,771
Mediums	0	0	26	0	0	0	37	5	0	0	0	0	0	5	0	1	74
Total	0	33	977	0	0	0	1,569	218	0	0	0	0	0	85	0	19	2,901

Appendix C TRAFFIC VOLUME DEVELOPMENT WORKSHEETS

1 - US 17/Savannah Highway \& Davison Road

2 - Davison Road \& Ten Shillings Way												
				TOTAL PROJECT TRAFFIC								
Traffic Control: TWSC Date Counted: 8/26/2019				AM	$\begin{aligned} & \text { IN } \\ & 83 \end{aligned}$	OUT		$\begin{gathered} \text { IN } \\ 276 \end{gathered}$	$\begin{aligned} & \text { OUT } \\ & 163 \end{aligned}$			
AM PEAK HOUR 7:00 AM - 8:00 AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 Existing Traffic Volumes	0	0	0	35	0	6	0	85	12	2	281	0
Years to Buildout	5	5	5	5		5	5	5	5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic Vested Traffic	0	0	0	4	0	1	0	$\begin{gathered} 9 \\ 68 \end{gathered}$	1	0	$\begin{gathered} 28 \\ 206 \end{gathered}$	0
2025 No Build Traffic Volumes	0	0	0	39	0	7	0	162	13	2	515	0
Inbound Project Traffic \% Outbound Project Traffic \%	2\%		10\%				10\%	75\%			75\%	2\%
2025 Project Traffic 2025 Pass-By Traffic	5	0	25	0	0	0	8	62	0	0	188	2
2025 Build Traffic Volumes	5	0	25	39	0	7	8	224	13	2	703	2
PM PEAK HOUR 5:00 PM - 6:00 PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 Existing Traffic Volumes	0	0	0	23	0	4	0	245	38	7	93	0
Years to Buildout	5	5	5	5	5	5	5	5	5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic	0	0	0	2	0	0	0	25	4	1	9	0
Vested Traffic								231			136	
2025 No Build Traffic Volumes	0	0	0	25	0	4	0	501	42	8	238	0
Inbound Project Traffic \%							10\%	75\%				2\%
Outbound Project Traffic \%	2\%		10\%								75\%	
2025 Project Traffic 2025 Pass-By Traffic	3	0	16	0	0	0	28	207	0	0	122	6
2025 Build Traffic Volumes	3	0	16	25	0	4	28	708	42	8	360	6

3 - Davison Road \& DW\#2												
Traffic Control: TWSC Date Counted: 8/26/2019				TOTAL PROJECT TRAFFIC								
				AM		$\begin{aligned} & \text { OUT } \\ & 251 \end{aligned}$	PM	$\begin{gathered} \text { IN } \\ 276 \end{gathered}$	$\begin{gathered} \text { OUT } \\ 163 \end{gathered}$			
AM PEAK HOUR 7:00 AM - 8:00 AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 Existing Traffic Volumes	0	0	0	0	0	0	0	85	0	0	281	0
Years to Buildout	5	5	5	5	5	5	5	5	5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic	0	0	0	0	0	0	0	9	0	0	28	0
Vested Traffic								68			206	
2025 No Build Traffic Volumes	0	0	0	0	0	0	0	162	0	0	515	0
Inbound Project Traffic \% Outbound Project Traffic \%	2\%		10\%				10\%	$\begin{gathered} \hline 65 \% \\ 2 \% \end{gathered}$			$\begin{gathered} \hline 2 \% \\ 65 \% \end{gathered}$	2\%
2025 Project Traffic 2025 Pass-By Traffic	5	0	25	0	0	0	8	59	0	0	165	2
2025 Build Traffic Volumes	5	0	25	0	0	0	8	221	0	0	680	2
PM PEAK HOUR 5:00 PM - 6:00 PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 Existing Traffic Volumes	0	0	0	0	0	0	0	245	0	0	93	0
Years to Buildout	5	5	5	5	5	5	5	5	5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic	0	0	0	0	0	0	0	25	0	0	9	0
Vested Traffic								231			136	
2025 No Build Traffic Volumes	0	0	0	0	0	0	0	501	0	0	238	0
Inbound Project Traffic \%							10\%	65\%			2\%	2\%
Outbound Project Traffic \%	2\%		10\%					2\%			65\%	
2025 Project Traffic 2025 Pass-By Traffic	3	0	16	0	0	0	28	182	0	0	112	6
2025 Build Traffic Volumes	3	0	16	0	0	0	28	683	0	0	350	6

4 - Bulow Landing Road \& County Line Road												
				TOTAL PROJECT TRAFFIC						SBL	SBT	SBR
					IN	OUT		$\begin{gathered} 1 \mathrm{~N} \\ 276 \end{gathered}$	$\begin{aligned} & \text { OUT } \\ & 163 \end{aligned}$			
Date Counted: 8/26/2019					83	251	PM					
AM PEAK HOUR 7:00 AM - 8:00 AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR			
2020 Existing Traffic Volumes	0	0	0	32	0	4	0	74	11	3	249	0
Years to Buildout	5	5	5	5	5	5	5		5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic	0	0	0	3	0	0	0	7	1	0	25	0
Vested Traffic								68			206	
2025 No Build Traffic Volumes	0	0	0	35	0	4	0	149	12	3	480	0
Inbound Project Traffic \% Outbound Project Traffic \%	5\%		45\%				45\%	$\begin{gathered} \hline 20 \% \\ 4 \% \end{gathered}$			4% 20%	5\%
	12	0	113	0	0	0	37	27	0	0		4
2025 Pass-By Traffic											5	4
2025 Build Traffic Volumes	12	0	113	35	0	4	37	176	12	3	534	4
PM PEAK HOUR 5:00 PM - 6:00 PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 Existing Traffic Volumes	0	0	0	16	0	4	0	209	36	3	77	0
Years to Buildout	5	5	5	5	5	5	5	5	5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic	0	0	0	2	0	0	0	21	4	0	8	0
Vested Traffic								231			136	
2025 No Build Traffic Volumes	0	0	0	18	0	4	0	461	40	3	221	0
Inbound Project Traffic \%							45\%	20\%			4\%	5\%
Outbound Project Traffic \%	5\%		45\%					4\%			20\%	
2025 Project Traffic 2025 Pass-By Traffic	8	0	74	0	0	0	123	62	0	0	44	14
2025 Build Traffic Volumes	8	0	74	18	0	4	123	523	40	3	265	14

5 - County Line Road \& DW\#4												
Traffic Control: TWSC				TOTAL PROJECT TRAFFIC								
				AM		OUT		$\begin{gathered} \text { IN } \\ 276 \end{gathered}$	$\begin{aligned} & \text { OUT } \\ & 163 \end{aligned}$			
AM PEAK HOUR 7:00 AM - 8:00 AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 Existing Traffic Volumes	5	252	0	0	78	5	0	0	0	5	0	5
Years to Buildout	5	5	5	5	5	5	5	5	5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic	1	25	0	0	8	1	0	0	0	1	0	1
Vested Traffic		148			59							
2025 No Build Traffic Volumes	6	425	0	0	145	6	0	0	0	6	0	6
Inbound Project Traffic \%		9\%	3\%	15\%	5\%							
Outbound Project Traffic \%		5\%			9\%		3\%		15\%			
2025 Project Traffic 2025 Pass-By Traffic	0	20	3	12	27	0	7	0	38	0	0	0
2025 Build Traffic Volumes	6	445	3	12	172	6	7	0	38	6	0	6
PM PEAK HOUR 5:00 PM - 6:00 PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 Existing Traffic Volumes	5	80	0	0	213	5	0	0	0	5	0	5
Years to Buildout	5	5	5	5	5	5	5	5	5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic	1	8	0	0	21	1	0	0	0	1	0	1
Vested Traffic		107			169							
2025 No Build Traffic Volumes	6	195	0	0	403	6	0	0	0	6	0	6
Inbound Project Traffic \%		9\%	3\%	15\%	5\%							
Outbound Project Traffic \%		5\%			9\%		3\%		15\%			
2025 Project Traffic 2025 Pass-By Traffic	0	33	8	41	29	0	5	0	25	0	0	0
2025 Build Traffic Volumes	6	228	8	41	432	6	5	0	25	6	0	6

6 - County Line Road \& DW\#5												
TOTAL PROJECT TRAFFIC												
Traffic Control: TWSC Date Counted: 8/26/2019				AM	$\begin{aligned} & \text { IN } \\ & 83 \end{aligned}$	OUT	PM	IN	OUT			
AM PEAK HOUR 7:00 AM - 8:00 AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 Existing Traffic Volumes	0	252	0	0	78	0	0	0	0	0	0	0
Years to Buildout	5		5	5	5	5		5	5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic	0	25	0	0	8	0	0	0	0	0	0	0
Vested Traffic		31			39							
2025 No Build Traffic Volumes	0	308	0	0	125	0	0	0	0	0	0	0
Inbound Project Traffic \% Outbound Project Traffic \%		12\%	3\%	5\%	12\%		3\%		5\%			
2025 Project Traffic 2025 Pass-By Traffic	0	10	3	4	30	0	8	0	13	0	0	0
2025 Build Traffic Volumes	0	318	3	4	155	0	8	0	13	0	0	0
PM PEAK HOUR 5:00 PM - 6:00 PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 Existing Traffic Volumes	0	80	0	0	213	0	0	0	0	0	0	0
Years to Buildout	5	5	5	5	5	5	5	5	5	5	5	5
Yearly Growth Rate	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Background Traffic	0	8	0	0	21	0	0	0	0	0	0	0
Vested Traffic		50			45							
2025 No Build Traffic Volumes	0	138	0	0	279	0	0	0	0	0	0	0
Inbound Project Traffic \%		12\%	3\%	5\%								
Outbound Project Traffic \%				12\%			3\%		5\%			
2025 Project Traffic 2025 Pass-By Traffic	0	33	8	14	20	0	5	0	8	0	0	0
2025 Build Traffic Volumes	0	171	8	14	299	0	5	0	8	0	0	0

Appendix D ANALYSIS WORKSHEETS: 2020 EXISTING CONDITIONS

Intersection						
Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	35	6	85	12	2	281
Future Vol, veh/h	35	6	85	12	2	281
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	7	7	7	7
Mvmt Flow	39	7	94	13	2	312

Intersection						
Int Delay, s/veh	1.1					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		4	「		\uparrow
Traffic Vol, veh/h	32	4	74	11	3	249
Future Vol, veh/h	32	4	74	11	3	249
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control S	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	7	7	7	7
Mvmt Flow	36	4	82	12	3	277

Intersection						

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	93	0	-	0	382	90
Stage 1	-	-	-		90	-
Stage 2	-	-	-	-	292	-
Critical Hdwy	4.17	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.263	-	-		3.518	3.318
Pot Cap-1 Maneuver	1471	-	-		620	968
Stage 1	-	-	-		934	-
Stage 2	-	-	-	-	758	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1471	-	-	-	617	968
Mov Cap-2 Maneuver	-	-	-	-	617	-
Stage 1	-	-	-		929	-
Stage 2	-	-	-	-	758	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		9.8	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		1471	-	-	-	754
HCM Lane V/C Ratio		0.004	-	-	-	0.015
HCM Control Delay (s)		7.5	0	-	-	9.8
HCM Lane LOS		A	A	-	-	A
HCM 95th \%tile Q(veh)		0	-	-	-	0

Intersection						
Int Delay, s/veh	0.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		F			\uparrow
Traffic Vol, veh/h	23	4	245	38	7	93
Future Vol, veh/h	23	4	245	38	7	93
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	2	2	7	7	7	7
Mvmt Flow	26	4	275	43	8	104

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	417	297	0	0	318	0
Stage 1	297	-	-	-	-	-
Stage 2	120	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.17	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.263	-
Pot Cap-1 Maneuver	592	742	-	-	1214	-
Stage 1	754	-	-	-	-	-
Stage 2	905	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	588	742	-	-	1214	-
Mov Cap-2 Maneuver	588	-	-	-	-	-
Stage 1	754	-	-	-	-	-
Stage 2	899	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.2		0		0.6	
HCM LOS	B					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	607	1214	-
HCM Lane V/C Ratio		-	-	0.05	0.006	-
HCM Control Delay (s)		-	-	11.2	8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0	-

Intersection						
Int Delay, s/veh	0.7					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		4	「		\uparrow
Traffic Vol, veh/h	16	4	209	36	3	77
Future Vol, veh/h	16	4	209	36	3	77
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control S	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	2	2	7	7	7	7
Mvmt Flow	18	4	235	40	3	87

Intersection						

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	245	0	-	0	344	242
Stage 1	-	-	-	-	242	-
Stage 2	-	-	-	-	102	-
Critical Hdwy	4.17	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.263	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1292	-	-	-	652	797
Stage 1	-	-	-	-	798	-
Stage 2	-	-	-	-	922	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1292	-	-	-	649	797
Mov Cap-2 Maneuver	-	-	-	-	649	-
Stage 1	-	-	-	-	794	-
Stage 2	-	-	-	-	922	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		10.1	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		1292	-	-	-	715
HCM Lane V/C Ratio		0.004	-	-	-	0.016
HCM Control Delay (s)		7.8	0	-	-	10.1
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh		0	-	-	-	0

Appendix E ANALYSIS WORKSHEETS: 2025 NO BUILD CONDITIONS

Intersection						
Int Delay, s/veh	0.9					
Movement V	WBL	WBR	NBT	NBR	SBL	
Lane Configurations	*F		$\hat{\beta}$			\uparrow
Traffic Vol, veh/h	39	7	162	13	2	515
Future Vol, veh/h	39	7	162	13	2	515
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Star	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stor	None	仡	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	7	7	7	7
Mvmt Flow	43	8	180	14	2	572

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	763	187	0	0	194	0
Stage 1	187	-	-	-	-	-
Stage 2	576	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.17	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.263	-
Pot Cap-1 Maneuver	372	855	-	-	1350	-
Stage 1	845	-	-	-	-	-
Stage 2	562	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	371	855	-	-	1350	-
Mov Cap-2 Maneuver	371	-	-	-	-	-
Stage 1	845	-	-	-	-	-
Stage 2	561	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15.1		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	406	1350	-
HCM Lane V/C Ratio		-	-	0.126	0.002	-
HCM Control Delay (s)		-	-	15.1	7.7	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	0.4	0	-

Intersection						
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		个	$\mathbf{7}$		\neq
Traffic Vol, veh/h	35	4	149	12	3	480
Future Vol, veh/h	35	4	149	12	3	480
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	7	7	7	7
Mvmt Flow	39	4	166	13	3	533

Intersection							
Int Delay, s/veh	0.3						
Movement EBL EBT WBT WBR SBL SBR							
Lane Configurations $\uparrow \uparrow \hat{\beta}$							
Traffic Vol, veh/h	6	425	145	6		6	
Future Vol, veh/h	6	425	145	6	6	6	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control Free Free Free Free Stop Stop							
RT Channelized - None - None - None							
	-	-	-	-	0	-	
Veh in Median Storage, \#		0	0	-	0	-	
Grade, \%		0	0	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, \%	2	2	7	7	7	7	
Mvmt Flow	7	472	161	7	7	7	

Major/Minor \quad N	Major1		Major2		Minor2	
Conflicting Flow All	168	0	-	0	651	165
Stage 1	-	-	-	-	165	-
Stage 2	-	-	-	-	486	-
Critical Hdwy	4.12	-	-	-	6.47	6.27
Critical Hdwy Stg 1	-	-	-		5.47	-
Critical Hdwy Stg 2	-	-	-	-	5.47	-
Follow-up Hdwy	2.218	-	-		3.563	3.363
Pot Cap-1 Maneuver	1410	-	-		425	867
Stage 1	-	-	-		852	-
Stage 2	-	-	-		608	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1410	-	-	-	422	867
Mov Cap-2 Maneuver	-	-	-		422	-
Stage 1	-	-	-		846	-
Stage 2	-	-	-		608	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		11.5	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		1410	-		-	568
HCM Lane V/C Ratio		0.005	-	-	-	0.023
HCM Control Delay (s)		7.6	0	-	-	11.5
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0	-	-	-	0.1

Intersection						
Int Delay, s/veh	0.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	P		\uparrow			\uparrow
Traffic Vol, veh/h	25	4	501	42	8	238
Future Vol, veh/h	25	4	501	42	8	238
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	7	7	7	7
Mvmt Flow	28	4	557	47	9	264

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	863	581	0	0	604	0
Stage 1	581	-	-	-	-	-
Stage 2	282	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.17	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.263	-
Pot Cap-1 Maneuver	325	514	-	-	950	-
Stage 1	559	-	-	-	-	-
Stage 2	766	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	321	514	-	-	950	-
Mov Cap-2 Maneuver	321	-	-	-	-	-
Stage 1	559	-	-	-	-	-
Stage 2	758	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	16.7		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	339	950	-
HCM Lane V/C Ratio		-	-	0.095	0.009	-
HCM Control Delay (s)		-	-	16.7	8.8	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0	-

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		个	\mathbf{F}		$\neq 1$
Traffic Vol, veh/h	18	4	461	40	3	221
Future Vol, veh/h	18	4	461	40	3	221
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	7	7	7	7
Mvmt Flow	20	4	512	44	3	246

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	764	512	0	0	556	0
Stage 1	512	-	-	-	-	-
Stage 2	252	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.17	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.263	-
Pot Cap-1 Maneuver	372	562	-	-	990	-
Stage 1	602	-	-	-	-	-
Stage 2	790	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	371	562	-	-	990	-
Mov Cap-2 Maneuver	371	-	-	-	-	-
Stage 1	602	-	-	-	-	-
Stage 2	787	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.7		0		0.1	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	395	990	-
HCM Lane V/C Ratio		-	-	0.062	0.003	-
HCM Control Delay (s)		-	-	14.7	8.6	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0	-

Intersection							
Int Delay, s/veh	0.3						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations \quad ¢							
Traffic Vol, veh/h	6	195	403	6		6	
Future Vol, veh/h	6	195	403	6	6	6	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control Free Free Free Free Stop Stop							
RT Channelized - None - None - None							
	-	-	-	-	0	-	
Veh in Median Storage, \#		0	0	-	0	-	
Grade, \%		0	0	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, \%	2	2	7	7	7	7	
Mvmt Flow	7	217	448	7	7	7	

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	455	0	-	0	683	452
\quad Stage 1	-	-	-	-	452	-
Stage 2	-	-	-	-	231	-
Critical Hdwy	4.12	-	-	-6.47	6.27	
Critical Hdwy Stg 1	-	-	-	-	5.47	-
Critical Hdwy Stg 2	-	-	-	-5.47	-	
Follow-up Hdwy	2.218	-	-	-3.563	3.363	
Pot Cap-1 Maneuver	1106	-	-	-	407	597
\quad Stage 1	-	-	-	-	631	-
\quad Stage 2	-	-	-	-	796	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1106	-	-	-	404	597
Mov Cap-2 Maneuver	-	-	-	-	404	-
Stage 1	-	-	-	-	627	-
Stage 2	-	-	-	-	796	-

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	12.7
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1106	-	-	-482
HCM Lane V/C Ratio	0.006	-	-	-0.028
HCM Control Delay (s)	8.3	0	-	-12.7
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-

Appendix F ANALYSIS WORKSHEETS: 2025 BUILD CONDITIONS

Intersection						

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\uparrow	「		\&	
Traffic Vol, veh/h	12	0	113	35	0	4	37	176	12	3	534	4
Future Vol, veh/h	12	0	113	35	0	4	37	176	12	3	534	4
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	150	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	7	7	7	7	7	7
Mvmt Flow	13	0	126	39	0	4	41	196	13	3	593	4

5: Project Driveway \#4/Equestrian Center \& County Line Road

Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			-1	Mr	
Traffic Vol, veh/h	318	3	4	155	8	13
Future Vol, veh/h	318	3	4	155	8	13
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	7	7	7	7	2	2
Mvmt Flow	353	3	4	172	9	14

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	356	0	535	355
Stage 1	-	-	-	-	355	-
Stage 2	-	-	-	-	180	-
Critical Hdwy	-	-	4.17	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.263	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1175	-	506	689
Stage 1	-	-	-	-	710	-
Stage 2	-	-	-	-	851	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1175	-	504	689
Mov Cap-2 Maneuver	-	-	-	-	504	-
Stage 1	-	-	-	-	710	-
Stage 2	-	-	-	-	848	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		11.2	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		604	-	-	1175	-
HCM Lane V/C Ratio		0.039	-	-	0.004	-
HCM Control Delay (s)		11.2	-	-	8.1	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

	\rangle		4	4	\downarrow	\checkmark	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	\％	个4	个个	「	${ }^{*}$	「	
Traffic Volume（vph）	118	1097	1760	629	322	69	
Future Volume（vph）	118	1097	1760	629	322	69	
Turn Type	Prot	NA	NA	Perm	Prot	Perm	
Protected Phases	1	Free！	2		$8!$		
Permitted Phases				2		8	
Detector Phase	1		2	2	8	8	
Switch Phase							
Minimum Initial（s）	6.0		20.0	20.0	8.0	8.0	
Minimum Split（s）	12.0		27.0	27.0	14.5	14.5	
Total Split（s）	15.0		73.0	73.0	32.0	32.0	
Total Split（\％）	12．5\％		60．8\％	60．8\％	26．7\％	26．7\％	
Yellow Time（s）	4.0		5.0	5.0	4.0	4.0	
All－Red Time（s）	2.0		2.0	2.0	2.5	2.5	
	0.0		0.0	0.0	0.0	0.0	
Lost Time Adjust（s） Total Lost Time（s）	6.0		7.0	7.0	6.5	6.5	
Lead／Lag	Lead		Lag	Lag			
Lead－Lag Optimize？	Yes		Yes	Yes			
Recall Mode	Min		Min	Min	Min	Min	
Act Efftt Green（s）	9.0	119.8	66.0	66.0	25.3	25.3	
Actuated g／C Ratio	0.08	1.00	0.55	0.55	0.21	0.21	
v／c Ratio	0.97	0.34	0.98	0.64	0.95	0.21	
Control Delay	126.5	0.3	42.9	9.7	84.5	21.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	126.5	0.3	42.9	9.7	84.5	21.4	
LOS	F	A	D	A	F	C	
Approach Delay		12.5	34.1		73.3		
Approach LOS		B	C		E		
Intersection Summary							
Cycle Length： 120							
Actuated Cycle Length： 119.8							
Natural Cycle： 110							
Control Type：Actuated－Uncoordinated							
Maximum v／c Ratio： 0.98							
Intersection Signal D					ersectio	LOS：C	
Intersection Capacity Utilization 89．3\％Analysis Period（min） 15							
！Phase conflict between lane groups．							
Splits and Phases：1：US17／Savannah Hwy \＆Davison Road							
	Ø2						
15 s 73							
							${ }^{\circ}$
							32 s

Intersection						

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\$			\uparrow	「		\&	
Traffic Vol, veh/h	8	0	74	18	0	4	123	523	40	3	265	14
Future Vol, veh/h	8	0	74	18	0	4	123	523	40	3	265	14
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	150	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	7	7	7	7	7	7
Mvmt Flow	9	0	82	20	0	4	137	581	44	3	294	16

Major/Minor \quad N	Major1		Major2		Minor1	
Conflicting Flow All	0	0	199	0	559	195
Stage 1	-	-	-	-	195	-
Stage 2	-	-	-	-	364	-
Critical Hdwy	-	-	4.17	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-		5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-		2.263		3.518	3.318
Pot Cap-1 Maneuver	-	-	1344	-	490	846
Stage 1	-	-	-		838	-
Stage 2	-	-	-		703	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1344	-	483	846
Mov Cap-2 Maneuver	-	-	-		483	-
Stage 1	-	-	-		838	-
Stage 2	-	-	-		692	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		10.6	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		656	-	-	1344	-
HCM Lane V/C Ratio		0.022	-		0.012	-
HCM Control Delay (s)		10.6	-	-	7.7	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Appendix G ANALYSIS WORKSHEETS: 2025 BUILD CONDITIONS W/ RECOMMENDED IMPROVEMENTS

Intersection													
Int Delay, s/veh	1.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			\dagger		\%	$\hat{6}$		\%	\uparrow		
Traffic Vol, veh/h	5	0	25	39	0	7	8	224	13	2	703	2	
Future Vol, veh/h	5	0	25	39	0	7	8	224	13	2	703	2	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	200	-	-	200	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, \%	2	2	2	2	2	2	7	7	7	7	7	7	
Mvmt Flow	6	0	28	43	0	8	9	249	14	2	781	2	

Intersection						

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	356	0	535	355
Stage 1	-	-	-	-	355	-
Stage 2	-	-	-	-	180	-
Critical Hdwy	-	-	4.17	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.263	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1175	-	506	689
Stage 1	-	-	-	-	710	-
Stage 2	-	-	-	-	851	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1175	-	504	689
Mov Cap-2 Maneuver	-	-	-	-	504	-
Stage 1	-	-	-	-	710	-
Stage 2	-	-	-	-	848	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		11.2	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		604	-	-	1175	-
HCM Lane V/C Ratio		0.039	-	-	0.004	-
HCM Control Delay (s)		11.2	-	-	8.1	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Intersection												
Int Delay, s/veh	1.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&		${ }^{7}$	\uparrow		${ }^{1 /}$	\uparrow	
Traffic Vol, veh/h	3	0	16	25	0	4	28	708	42	8	360	6
Future Vol, veh/h	3	0	16	25	0	4	28	708	42	8	360	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	200	-	-	200	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	7	7	7	7	7	7
Mvmt Flow	3	0	18	28	0	4	31	787	47	9	400	7

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	r		1	4	\uparrow	
Traffic Vol, veh/h	3	16	28	683	350	6
Future Vol, veh/h	3	16	28	683	350	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	200	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	7	7	7	7
Mvmt Flow	3	18	31	759	389	7

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\dagger		${ }^{7}$	4	「	${ }^{7}$	$\hat{1}$	
Traffic Vol, veh/h	8	0	74	18	0	4	123	523	40	3	265	14
Future Vol, veh/h	8	0	74	18	0	4	123	523	40	3	265	14
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Stoper	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	200	-	150	200	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	7	7	7	7	7	7
Mvmt Flow	9	0	82	20	0	4	137	581	44	3	294	16

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	\uparrow			\&			\uparrow	
Traffic Vol, veh/h	6	228	8	41	432	6	5	0	25	6	0	6
Future Vol, veh/h	6	228	8	41	432	6	5	0	25	6	0	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Froser	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	200	-	-	200	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	7	7	7	7	7	7	2	2	2	2	2	2
Mvmt Flow	7	253	9	46	480	7	6	0	28	7	0	7

Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	MF	
Traffic Vol, veh/h	171	8	14	299	5	8
Future Vol, veh/h	171	8	14	299	5	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	7	7	7	7	2	2
Mvmt Flow	190	9	16	332	6	9

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	199	0	559	195
Stage 1	-	-	-	-	195	-
Stage 2	-	-	-	-	364	-
Critical Hdwy	-	-	4.17	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.263	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1344	-	490	846
Stage 1	-	-	-	-	838	-
Stage 2	-	-	-	-	703	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1344	-	483	846
Mov Cap-2 Maneuver	-	-	-	-	483	-
Stage 1	-	-	-	-	838	-
Stage 2	-	-	-	-	692	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		10.6	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1 EBT EBR WBL WBT				
Capacity (veh/h)		656	-	-	1344	-
HCM Lane V/C Ratio		0.022	-	-	0.012	-
HCM Control Delay (s)		10.6	-	-	7.7	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Appendix H TURN LANE ANALYSIS WORKSHEETS

INTERSECTION: County Line Road \& Project Driveway 1
MOVEMENT: Southbound Right-Turn Lane

Note: For highways with a design speed below 50 miles per hour with a DHV <300 and where right turns >40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

Example

Design Speed $\quad=\quad 35$ miles per hour DHV $\quad=\quad 250$ vehicles per hour Right Turns $\quad=\quad 100$ vehicles per hour

Problem: Determine if a right-turn lane is necessary.
Solution: \quad To read the vertical axis, use $100-20=80$ vehicles per hour. The figure indicates that a right-turn lane is not necessary, unless other factors (e.g., high crash rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS

Figure 9.5-A

2025 Build Conditions	Major Road Volume (Direction of Right Turn Ingress)	Right Turn Volume	Speed along Right Turn Ingress	Symbol
AM Peak Hour	707	2	45	0
PM Peak Hour	374	6	45	\square

INTERSECTION: County Line Road \& Project Driveway 1
MOVEMENT: Northbound Left-Turn Lane
9.5-8 INTERSECTIONS March 2017

Instructions:

1. The family of curves represents the percent of left turns in the advancing volume (V_{A}). The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

VOLUME GUIDELINES FOR LEFT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS (45 mph)

Figure 9.5-F

2025 Build Conditions	\mathbf{V}_{A}	EBL	$\mathbf{V}_{\mathbf{O}}$	\mathbf{V}_{A} LT \%	Symbol
AM Peak Hour	245	8	707	3.3%	0
PM Peak Hour	778	28	374	3.6%	\square

INTERSECTION: County Line Road \& Project Driveway 2
MOVEMENT: Southbound Right-Turn Lane

Note: For highways with a design speed below 50 miles per hour with a DHV <300 and where right turns >40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

Example

Given:

Design Speed	$=$	35 miles per hour
DHV	$=$	250 vehicles per hour
Right Turns	$=$	100 vehicles per hour

Problem: Determine if a right-turn lane is necessary.
Solution: \quad To read the vertical axis, use $100-20=80$ vehicles per hour. The figure indicates that a right-turn lane is not necessary, unless other factors (e.g., high crash rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS

Figure 9.5-A

2025 Build Conditions	Major Road Volume (Direction of Right Turn Ingress)	Right Turn Volume	Speed along Right Turn Ingress	Symbol
AM Peak Hour	682	6	45	0
PM Peak Hour	356	2	45	\square

INTERSECTION: County Line Road \& Project Driveway 2
MOVEMENT: Northbound Left-Turn Lane
9.5-8 INTERSECTIONS March 2017

Instructions:

1. The family of curves represents the percent of left turns in the advancing volume (V_{A}). The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

VOLUME GUIDELINES FOR LEFT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS (45 mph)

Figure 9.5-F

2025 Build Conditions	$\mathbf{V A}_{\text {A }}$	EBL	$\mathbf{V}_{\mathbf{O}}$	$\mathbf{V}_{\text {A }}$ LT \%	Symbol
AM Peak Hour	229	8	682	3.5%	0
PM Peak Hour	711	28	356	3.9%	\square

INTERSECTION: County Line Road \& Project Driveway 3
MOVEMENT: Southbound Right-Turn Lane

Note: For highways with a design speed below 50 miles per hour with a DHV <300 and where right turns >40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

Example

Design Speed $\quad=\quad 35$ miles per hour DHV $=\quad 250$ vehicles per hour Right Turns $\quad=\quad 100$ vehicles per hour

Problem: Determine if a right-turn lane is necessary.
Solution: \quad To read the vertical axis, use $100-20=80$ vehicles per hour. The figure indicates that a right-turn lane is not necessary, unless other factors (e.g., high crash rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS

Figure 9.5-A

2025 Build Conditions	Major Road Volume (Direction of Right Turn Ingress)	Right Turn Volume	Speed along Right Turn Ingress	Symbol
AM Peak Hour	541	4	45	0
PM Peak Hour	282	14	45	\square

INTERSECTION: County Line Road \& Project Driveway 3
MOVEMENT: Northbound Left-Turn Lane
9.5-8 \quad INTERSECTIONS \quad March 2017

Instructions:

1. The family of curves represents the percent of left turns in the advancing volume (V_{A}). The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

VOLUME GUIDELINES FOR LEFT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS (45 mph)

Figure 9.5-F

2025 Build Conditions	$\mathbf{V}_{\text {A }}$	EBL	$\mathbf{V}_{\mathbf{O}}$	V $_{\text {A }}$ LT \%	Symbol
AM Peak Hour	225	37	541	16.4%	0
PM Peak Hour	686	123	282	17.9%	\square

INTERSECTION: County Line Road \& Project Driveway 4
MOVEMENT: Eastbound Right-Turn Lane

Note: For highways with a design speed below 50 miles per hour with a DHV <300 and where right turns >40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

Example

Design Speed $\quad=\quad 35$ miles per hour DHV $=\quad 250$ vehicles per hour Right Turns $\quad=\quad 100$ vehicles per hour

Problem: Determine if a right-turn lane is necessary.
Solution: \quad To read the vertical axis, use $100-20=80$ vehicles per hour. The figure indicates that a right-turn lane is not necessary, unless other factors (e.g., high crash rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS

Figure 9.5-A

2025 Build Conditions	Major Road Volume (Direction of Right Turn Ingress)	Right Turn Volume	Speed along Right Turn Ingress	Symbol
AM Peak Hour	454	3	45	0
PM Peak Hour	242	8	45	\square

INTERSECTION: County Line Road \& Project Driveway 4
MOVEMENT: Westbound Left-Turn Lane
9.5-8 INTERSECTIONS March 2017

Instructions:

1. The family of curves represents the percent of left turns in the advancing volume $\left(V_{A}\right)$. The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

VOLUME GUIDELINES FOR LEFT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS (45 mph)

Figure 9.5-F

2025 Build Conditions	\mathbf{V}_{A}	EBL	$\mathbf{V}_{\mathbf{O}}$	\mathbf{V}_{A} LT \%	Symbol
AM Peak Hour	190	12	454	6.3%	0
PM Peak Hour	479	41	242	8.6%	\square

INTERSECTION: County Line Road \& Project Driveway 5
MOVEMENT: Eastbound Right-Turn Lane

Note: For highways with a design speed below 50 miles per hour with a DHV <300 and where right turns >40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

Example

Design Speed $\quad=\quad 35$ miles per hour DHV $\quad=\quad 250$ vehicles per hour Right Turns $\quad=\quad 100$ vehicles per hour

Problem: Determine if a right-turn lane is necessary.
Solution: \quad To read the vertical axis, use $100-20=80$ vehicles per hour. The figure indicates that a right-turn lane is not necessary, unless other factors (e.g., high crash rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS

Figure 9.5-A

2025 Build Conditions	Major Road Volume (Direction of Right Turn Ingress)	Right Turn Volume	Speed along Right Turn Ingress	Symbol
AM Peak Hour	321	3	45	0
PM Peak Hour	179	8	45	\square

INTERSECTION: County Line Road \& Project Driveway 5
MOVEMENT: Westbound Left-Turn Lane
9.5-8 INTERSECTIONS March 2017

Instructions:

1. The family of curves represents the percent of left turns in the advancing volume $\left(V_{A}\right)$. The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

VOLUME GUIDELINES FOR LEFT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS (45 mph)

Figure 9.5-F

2025 Build Conditions	\mathbf{V}_{A}	EBL	$\mathbf{V}_{\mathbf{O}}$	$\mathbf{V}_{\mathbf{A}}$ LT \%	Symbol
AM Peak Hour	159	4	321	3%	0
PM Peak Hour	313	14	179	4%	\square

